

Space Visualization and Rendering Evaluation

Vineet Ahirkar, Pratik Bhangale, Kyle Boyer, graduate student, UMBC.

 Fig. 1. Different Rendering Fidelity levels - Low, medium, and high detail.

Abstract— We wish to explore the capabilities and benefits of realistic volume and surface rendering in virtual reality. Our goal is
to compare multiple rendering methods, specifically for volumetric data, when applied to VR. We will be implementing three
different techniques for displaying voxelized data, and measuring the effects that these different implementations have on realism,
performance, and scalability.

Index Terms— Volumetric rendering, Realism, Performance, Space visualization, Surface rendering.

1 INTRODUCTION

Virtual Reality, as a medium, is rapidly gaining momentum and
popularity for all things related to graphical display. Software is
being created that takes advantage of Virtual Reality's immersiveness
to breathe new life into all sorts of rendering. It's being used for large
scale 3D data visualization, life-like training simulations, and
engaging video games. Within all of the new development for
Virtual Reality, there is a common element among all applications:
graphical rendering. Virtual Reality is very demanding on graphics
processing units. Objects must be rendered at lightning speed,
transitions must be made seamlessly, and projections must be
performed to each eye in real time. As a result, when rendering
anything to a Head Mounted Display (HMD), performance suffers.
This raises the question of how much performance is worth
sacrificing, and for what level of realism should we give up
framerate. We will attempt to answer these questions by conducting
an objective study of realism and performance, based on predefined
levels of detail rendered in Virtual Reality.

2 RELATED WORK

The process of visualizing volumetric data has been around for quite
a few years now, and it is becoming widely used in the decision
making process surrounding the data in question [2]. We utilize
visualizations, both interactive and not, to make informed

assessments about what we’re looking at. This concept is applied to
many datasets and problems, to find potential solutions. Examples
include air quality index, chemical sensing fields, and
spatio-temporal structures built from satellite information [1].

This method, although a useful and often effective one, comes with
some inherent difficulties and potential problems. One of those
issues is how to actually render the data in a 3 dimensional space.
The more traditional way of rendering volumetric data is to utilize
step based ray tracing, in which pixels are calculated by the
summation of consistent checks inside the volume along a viewing
ray. With some hardware acceleration, based on a discrete graphics
card, Mayerich and Keyser share the opinion that this is by far the
best method for volumetric rendering [4]. Gascon, Espadero, Perez,
and Torres contest that a more graphics pipeline centered
rasterization method is very effective [3]. They propose that triangle
meshes can be rendered, and then deformed as need be to simulate
non-rigid volumes [3].

Our project takes volumetric rendering a step further, by porting it
into the VR world. We would like to expand upon these types of
works and explore the costs of rendering volume data in 3D Virtual
Reality. There have already been numerous studies and applications

of spatial and volumetric data visualization in VR. It introduces
numerous problematic scenarios, including how to effectively handle
occlusion [5]. In our implementation, we plan to use a ray casting
technique akin to the one that Mayerich and Keyser describe, rather
than the isosurface rasterization. However, with our research, we
plan to explore different levels of fidelity with the ray casting, by
implementing extra additions like stochastic ray origins. Virtual
Reality tends to not support vast data space for 3d volumes very
well, especially when the user is expected to traverse the data space
by mere movement. Our work will be focused on solving a problem,
similar to Gascon and Espadero [3], or Fischer and Bartz [5], but we
will be evaluating different levels of rendering and shading
techniques, to find what is necessary and effective, rather than the
complications that come with how to interact with the data.

3 DESIGN AND IMPLEMENTATION

To evaluate the effects, and cost, of increased visual clarity on VR
renderings and data representations, we designed a case study based
on three settings of what we refer to as “fidelity.” Fidelity represents
the rendering quality of a particular scene. The higher levels of
fidelity include techniques for displaying surfaces and volumes that
should result in a more realistic representation of our intended
objects. The surfaces are created with higher detail, and the volumes
are rendered more rigorously. The extra computation required to
create the higher fidelity scene should, in theory, come at a
performance reduction.
Having three different levels of fidelity will allow us to evaluate
performance and realism at three different input levels. We will be
using a “low” fidelity, a “medium” fidelity, and a “high” fidelity
environment setup. These three different scenes will then be
measured objectively for graphics processing performance, and
realism. The inspiration for our experimental design came from a
publication by Eric Ragan and Doug Bowman, in which they
conducted an experiment to evaluate the effect of visual realism on
military task completion. [7]

3.1 Experiment Implementation Description

3.1.1 Independent Variables

The main independent variable in this experiment is:

1. Rendering Quality
a. Ray casting additions/modifications
b. Surface shading techniques

3.1.2 Dependent Variables

The dependent variables in this experiment are:

1. Realism
2. Performance

3.1.3 General Overview

Our main focus of the experiment is to compare different rendering
techniques on the basis of realism and performance.

Realism of volumetric data can be best measured in a relative
context. So for calculating the metrics we have a reference technique
which has optimum realism. Two test techniques are then compared
with the reference technique.[2]

We used 4 metrics to get an estimate of the realism in the technique
being tested.

Calculate 4 metrics (in Matlab) -

1. Color Variance

Calculate the number of unique colors in the environment and divide
it by the total number of pixels. Images could differ from each other
in the number of unique colors, and is thus possibly perceived as less
realistic. Higher value of CV denotes an image with more varied
color information. Thus, relatively comparing the CVTest and
CVReference we get the loss in color information thus giving a
general idea of Realism. Lower value of MetricCV , more it is closer
to the Reference Image and depicts more realism.

where, I: image in RGB space, N: number of pixel values in I , Ic: {

(R1,G1,B1), (R2,G2,B2), (R3,G3,B3) }

MetricCV = | CVReference - CVTest |

where, CV: Color Variance.

2. Mean squared Error (MSE)

Conveys the difference in pixel values of the test image and the
reference image. The main advantage of MSE is that it allows us to
compare the “true” pixel values of reference image to our test
images. Lower the MSE more it is similar to the reference image and
thus has more realism. The problem is that it depends strongly on the
image intensity scaling.

...where X: Test Image , Y: Reference Image

3. Peak Signal to Noise Ratio (PSNR)

Ratio between the maximum possible quality of an image (Reference
Image) and the data loss (due to texture compression) that affects the
realism in it. PSNR is calculated in the logarithmic scale and
measured in terms of decimals. Higher the PSNR value more it is
similar to the reference image and thus has more realism.

...where, MAXI: maximum possible pixel value of the image. (8 bit ~
255) , MSE: Mean Squared Error

4. Structural Similarity Index Metric (SSIM)

Evaluates differences in structure between a reference and test
image.
Structure can be essentially defined as the absence of luminance and
contrast. The main advantage of this technique is that it is consistent
with human visual perception. It first generates a map of local
distortion values and then pools those values into a single distortion
value. Higher the value of SSIM, more the realism.

The Formula for SSIM is as follows:

...where, μ: average of all pixels, 𝜎: variance of all pixels, c:
constant.

We hypothesize that the quantitative analysis of rendering techniques
via the below mentioned metrics will prove to be a good measure of
realism in an immersive VR environment, and that high fidelity
rendering will negatively affect performance. We believe that the
performance may be affected too much by the increase in realism,
and thus realism may need to be throttled, to increase computation
speed.

3.2 Software Implementation Description

3.2.1 Tools used

The rendering for this project will be implemented using a
combination of many different tools and languages. Those entities
are listed here:

1. Unity

Game development platform. Used to implement the construction of
our world environment, and facilitate xyz coordinate space changes.
We use Unity to tie everything together, and to build the final
project.

2. SteamVR

Virtual Reality platform developed by Valve. This is used to
implement the head tracking functionality for the HTC Vive.
SteamVR offers an integration package that can be used from the
Unity Asset Store, to be imported directly into a Unity project. This
was how we facilitated VR control.

3. C#

Scripting language that integrates into Unity, using a library called
UnityEngine. This language is used to manipulate Game Objects in
the Unity environment. It is primarily utilized to create objects, read
data input, texture planets, and construct the environment and
interactions.

4. HL/SL

Shader language used to implement the rendering techniques we will
be testing. HL/SL is a shader language that runs on the GPU. Unity
has its own built in shading packages and lighting models, but we
will be overriding them with our own custom shader code. The code
will primarily be used for volumetric rendering, with additional
rendering techniques such as stochastic ray marching implemented as
well. HL/SL will be used to create both vertex shaders and fragment
shaders for the implementation.

For calculating the metrics we used the following tools:

1. Matlab

MATLAB (matrix laboratory) is a multi-paradigm numerical
computing environment and fourth-generation programming
language. A proprietary programming language developed by
MathWorks, MATLAB allows matrix manipulations, plotting of
functions and data, implementation of algorithms.

We used matlab for programming realism metrics. For metric
calculation we took snapshots of the environment from various
angles in VR environment. We wanted to compare the 3 rendering
variants so, we choose the high detailed rendering as our reference
image and compare other two variants to determine how realistic
they are.

Primarily we used four different matlab programs to determine the
realism:

1. Color Variance
2. Mean squared Error
3. Peak Signal to Noise Ratio
4. Structural Similarity Index Metric

3.2.2 Lighting, Modelling, and Rendering

The lighting model used in our implementation was global ambient
light functionality provided by Unity. However, all individual point
lights were removed from our environment. This allowed us to
simulate the conditions in space, creating the illusion of lit celestial
bodies. Each entity was modeled using a standard Unity sphere asset,
with a different texture overlaid, as per the following:

- Low Fidelity: Low resolution texture. (64x64
upscaled to 2048x2048)

- Medium Fidelity: Medium resolution texture. (1024x512
upscaled to 2048x1024)

- High Fidelity: Uncompressed textures, multiple,

https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Numerical_analysis
https://en.wikipedia.org/wiki/Multi-paradigm_programming_language

moving. (4096x4096). Added glow and particle effects

The volumetric rendering eas handled with different Ray Marching
techniques, all implemented using HL/SL in vertex and fragment
shaders. These shaders were written and used in place of Unity’s
provided shaders, effectively overriding them. This required
overriding Unity’s standard lighting model for lighting surfaces with
our own, for manipulating volumes. The volumetric data was
rendered as follows:

- Low Fidelity: 3D voxel texture construction, follwed
by a direct density lookup into the voxel texture.

- Medium Fidelity: 3D voxel texture construction,
followed by the execution of a density-to-color mapping
function. The function performed a secondary 2D texture
lookup to complete mapping, as the last functional step,
which resulted in a final pixel color.

- High Fidelity: 3D voxel texture construction,
followed by the same mapping function with 2D texture as
above. A stochastic ray origin was added to alleviate ripple
artifacts very visible in the medium fidelity version..
Additional slicing was also performed through the volume,
to get a more realistic appearance.

The background, as previously stated, was a standard Unity skybox
with lighting effects removed.

3.2.3 User interaction system and Interaction technique

We rendered a space environment in which the subject can do
actions using the HTC Vive controllers.
The triggers on both the controllers may be used to thrust in the
direction the controller is pointing, thus enabling movement in space.
This also simulated “floaty” spatial movement, akin to freely flying
in a spacecraft.
The touchpads on the Vive controllers can be used to slice both
volumes left, right, up, and down. This allows the user to see inside
the rendered volume in real time, and scrutinize the data far more
effectively. The position of the volumes can be reset to default by
squeezing the left controller.
Similarly, squeezing the right controller changes the environment
from low, to medium, to high fidelity. It effectively toggles the
current level of detail being displayed to the user. Conversely, this
will also lower the framerate, hence our topic of study.

 Fig. 2. Performance Evaluation

3.2.4 Display type

We used an HTC Vive head mounted display (HMD). The Vive has
a Field of View of 110 degrees. It also boasts a relatively high
refresh rate of 90Hz. This means that any frame rate increases above
90fps will not be visible to the user.

The implementation was developed and tested on one of the author’s
home systems. The system is more graphically capable than most
home PCs. The specifications are as follows.

- Processor: Intel Core i7 4790k - 4.6 GHz
- GPU: nVidia GTX 1080
- RAM: 16 GB
- Storage: Samsung SSD (irrelevant for real-time

rendering, but reduces texture construction time)

4 RESULTS

4.1 Statistics

Independent Variables
The main independent variable in this experiment is:

1. Rendering Quality
c. Ray casting additions/modifications
d. Surface shading techniques

 Realism of volumetric data can be best measured in a relative
context.

Calculate 4 metrics (in Matlab) -

1. Color Variance
Calculate the number of unique colors in the environment
and divide it by the total number of pixels.

 Reference Image Test Image 1 Test Image 2

CV 0.0731 0.0482 0.0554

 Test Image 1 Test Image 2

MetricColor 0.0249 0.0177

 Fig. 3. Color Variance

2. Mean squared Error

Conveys the difference in pixel values of the test image and the
reference image.

 Test Image 1 Test Image 2
MSE 0.03147 0.030856

Fig. 4. Mean Square Error

3. Peak Signal to Noise Ratio

Ratio between the maximum possible quality of an image and the
data loss that affects the realism in it.

 Test Image 1 Test Image 2
PSNR 13.1518 13.2375

Fig. 5. Peak Signal to Noise Ratio

4. Structural Similarity Index Metric

Evaluates differences in structure between a reference and test
image.

 Test Image 1 Test Image 2
SSIM 0.7894 0.7942

Fig. 6. Structural Similarity Index Metric

4.2 Study Results

For Color Variance (CV) and Mean Square Error (MSE) lower the
value better is realism for that technique. For Peak Signal to Noise
Ratio (PSNR) and Structural Structural Similarity Index Metric
(SSIM) we observed that higher the value of these metrics are higher
is the realism for that technique.

From the results of the metrics we used, it was seen that the ‘test
image 2’ had better realism that ‘test image 1’, which could also be
seen be seen by visual perception of the images by the human eye.
This means that the ‘High resolution texturing’ technique performed
better than the ‘Low resolution texturing’ technique.
Thus, the metrics proved to be a good measure of realism in an
immersive Virtual Reality environment. Also, using only one of the
metrics would give a biased opinion about the realism and thus more
the metrics used better would be the results.

Calculating metrics based on a reference model proves to be
beneficial as we can get a threshold of the optimum value of that
metric. If no reference is used then metric values do not give
sufficient information about the realism in the image.

Items we think are need to fix are to put more details in the rendered
scene. To make the scene look more realistic we need to add some
stars and asteroids in it.
Also, we can show an FPS counter in the scene so that people can get
to know the performance of the scene being rendered.

5 DISCUSSION

We hypothesised that the four metrics are good measures of realism
in an immersive VR environment, and that an increase in realism will
result in a decrease in performance. The stated hypothesis has thus
proved to be true by doing the analysis on the various rendering
techniques mentioned above.

Something interesting we found from results of the metrics was that,
every metric works in a different aspect to measure the reality in an
image. Some metrics try to extract the color while other look at
structure in an image. Color Variance and Mean Squared Error tries
to extract information about the color loss between two images. Peak
Signal to Noise Ratio does the same, but works well in bigger
images. Structural Similarity Index Metric on the other hand tries to
identify the basic structure of an image and then looks at the changes
in the structure between the two images supplied. Thus, using
different kinds of metrics we get an overall idea of the realism in an
image.

In future, we would like to compare the results of the objective study
with the results from a subjective analysis. In a way, this will
validate the results we see in the quantitative evaluation.

6 CONCLUSION

Realism in an image can be best measured in a relative context.
Using multiple metrics gives information about different aspects in
the image (eg - Color, Structure, illuminance) which gives detailed
analysis of realism in the image.

We conclude that the correct level of fidelity to utilize when
rendering in VR actually depends very heavily upon what hardware
is available. High end hardware that can handle the extra rendering
computation makes it worth it to display additional realism. The
HMD refresh rate in VIVE is 90 Hz. Thus, any frame rate change
over this value will be inconsequential. To preserve immersion, it is
very desirable to maintain a frame rate relatively close to 90Hz.
Inconsistent or “choppy” frame rate will very negatively affect a VR
experience. It is better to sacrifice a bit of realism for performance
increase in most cases, especially if the intended hardware to run the
desired application is limited.

ACKNOWLEDGMENTS

The authors wish to thank Dr. Jian Chen. This work was supported in
part by a grant from NSF for the PI^2 (a CAVE2-Inspired Display)
and the Virtual Reality course for Spring 2017. The authors would
also like to extend their thanks to Dr. Neel Savani, NASA Goddard
Space Flight Center, for supplying datasets and providing guidance
through the project’s development.

REFERENCES

[1] Huan Li; Hong Fan; Feiyue Mao. A Visualization Approach to Air

Pollution Data Exploration—A Case Study of Air Quality Index (PM

2.5) in Beijing, China

[2] Norman Wang , Wendy Doube : How real is reality?

A perceptually motivated system for quantifying visual realism in

digital images

[3] Bryan N. Duncan a, *, Ana I. Prados a, b, Lok N. Lamsal a, c, Yang Liu

d, David G. Streets e,Pawan Gupta a, c, Ernest Hilsenrath b, f, Ralph A.

Kahn a, J. Eric Nielsen g,Andreas J. Beyersdorf h, Sharon P. Burton h,

Arlene M. Fiore i, Jack Fishman j,Daven K. Henze k, Chris A. Hostetler

h, Nickolay A. Krotkov a, Pius Lee l, Meiyun Lin m,Steven Pawson a,

Gabriele Pfister n, Kenneth E. Pickering a, R. Bradley Pierce o, Yasuko

Yoshida a, g, Luke D. Ziemba h : “Satellite data of atmospheric

pollution for U.S. air quality applications”: Examples of applications,

summary of data end-user resources, answers to FAQs, and common

mistakes to avoid.

[4] Jorge Gascon; Jose M. Espadero; Alvaro G. Perez; Rosell Torres;

Miguel A. Otaduy. Fast Deformation of Volume Data Using Tetrahedral

Mesh Rasterization.

[5] David Mayerich; John Keyser: Hardware accelerated Segmentation of

Complex Volumetric Filament Networks.

[6] Jan Fischer; Dirk Bartz; Wolfgang Straber: Occlusion Handling for

Medical Augmented Reality using a Volumetric Phantom Model.

[7] Eric Ragan; Doug Bowman; Effects of Field of View and Visual

Complexity on Virtual Reality Training Effectiveness for a Visual

Scanning Task

