Safe Route Recommender : An efficient way to find safe
and short path between source and destination

Pratik Bhangale
Computer Science, UMBC
Email: pratikbl @umbc.edu

Abstract—Over the last decade , the use of maps has
increased dramatically. Every car or traveling individual
use Google maps for navigating to their desired destination.
Although the routes provided by Google maps helps users
to figure which is the shortest or traffic free path, but
here safety is not taken into consideration. In this paper,
we propose and develop a mobile application that utilizes
crime data to recommend the safe and shortest route
between source and destination. We model the calculation
of the safeness of the route based on 3 different data sets
a) Crime records b) Accident cases c¢) Police station and
health care services. Specifically, Using data of Baltimore
city we develop a safeness model for street urban network
which allows us to give safe factor to every street. The
model uses hadoop and spark scripts for big data process-
ing. Furthermore the paper also discusses caching system
used to provide real time response to the mobile app and
also identifies what could be done to improve such systems.

Keywords—Navigation, Big data, Android, NoSql,
Hadoop, Spark, Web service, Google Maps, REST API.

I. INTRODUCTION

Today, 54 per cent of the worlds population lives
in urban areas, a proportion that is expected to
increase to 66 per cent by 2050. Projections show
that urbanization combined with the overall growth
of the worlds population could add another 2.5
billion people to urban populations by 2050 [1]
says un.org. One of the main reasons for these
levels of urbanization is the long-lived thought of
cities as the paramount instrument for innovation
and wealth creation. Due to increasing population
density in cities, they have become the main source
of crimes, diseases and pollution, which is signif-
icantly deteriorating the quality of life in cities.
We have concentrated on the data of Baltimore
city. According to the FBI (Uniform crime report)
Baltimore, Maryland is one of the high crime rated

Vishal Rathod
Computer Science, UMBC
Email: vishalrl @umbc.edu

Mayur Pate
Computer Science, UMBC
Email: mayurpl @umbc.edu

city[2]. Many government authorities are maintain-
ing a lot of data about the crime and accidents. The
open government and data initiative from President
Obamas administration [3] has further led many
local authorities to systematically collect, organize
and publicize such datasets. In this paper, we focus
on finding a solution for one of the major aforemen-
tioned problems present in almost every megacity
today: crimes and public safety. We develop a
mobile application and big data system aiming to
identify safe and short paths for people to take when
they navigate through the city. For this purpose we
analyze both crime and accident cases present on
a particular path. Major challenge in this project
is to approximate between safe and shortest path.
So ideally, prioritizing the safety of dwellers, one
would like to provide the user with the safest path
from origin x to destination y. We have developed a
mobile application where user will enter the source
and destination and user will be able to see the mul-
tiple paths according to their safe scores on the map
interface in app. The paper is structured as follows:
Section 2 provides a motivation for developing this
safe route recommender service. Section 3 gives an
overview of related works done till date and how
our idea is unique for commuters. Section 4 presents
details about who will be actual users of this service,
and then approach and implementation details of
this services, we discuss the algorithmic approach
and big data computations to get the intended results
and how system can be scaled to handle large
amounts of requests. The paper concludes with a
summary and results in Section 10 and onward.

II. MOTIVATION

The way we navigate in cities has been revo-
lutionized in the last few years by the advent of

GPS mapping programs. Most GPS mapping apps
are designed to get you where you want to go
quickly just by entering your start and end location
and these will give you the shortest route from
A to B. But consider if a tourist or a traveller
is new two a certain place and he doesn’t aware
that how secure is that place for travelling through
vehicles or as a pedestrian. If considered places like
Detroit, where a violent crime rate of 1,988.63 per
100,000 people, similarly for Memphis its 1,740.51,
Oakland 1,685.39 and for Baltimore its 1,338.54,
etc. Some of the most prominent crimes in the
city are aggravated assault, assault with a deadly
weapon, rape, armed robbery, murder and non-
negligent manslaughter. Along with such records
there are also places where its too unsecure for
vehicular travelling due to road conditions and
structures which caused tremendous increases in
accidental cases in last few years. These all cases
which makes a reasonable requirement of alternative
paths those are not only short by distance but also
secure for travelling or walking.

So tackle the everyday problem of public i.e.
google map helps to find the shortest route with
traffic information etc but it sometimes shows the
shortest path that involves a deserted route; which
is not safe. Thus the motivation chosen is an apt
one to develop a service which is useful for every
individual today for whom the safest routes to a
destination, which is also an important factor. This
service plays vital role for those who unaware
of a particular area/city. Also this service can be
embedded with apps widely used like Ways, Google
Maps. The project deals with a real world huge
openly available data and addresses a social problem
of making the travel of people more convenient and
safe. The designed algorithms of this project also
supports those commuters are often concerned with
the quickest path to a destination by recommending
the trade of between short and safe path. The goal
of this work is to automatically suggest routes that
are not only short but also secure.

III. RELATED WORKS

There are few developments on the similar lines
of the system we have built, some of which are
enlisted below:

e The Shortest ~ Path to Happiness:
Recommending Beautiful, Quiet, and Happy
Routes in the City. The Yahoo researchers
have developed the algorithm which allows
user to take the Scenic Route through a
new Mapping Software which gives ’Beauty
Scores of different routes between source
and destination. The goal of this work is to
automatically suggest routes that are not only
short but also emotionally pleasant, they say.
They then crowd sourced opinions about the
beauty of each location using a website called
UrbanGems.org.

« Safe Route - San Francisco 2016 TechCrunch
Disrupt Hackathon. The one of runners-up
team built an application SafeRoute, a hack
designed to give users a safer path to their
destination. As its name implies, Safe Route
is designed to give users a safer path to their
destination. The app utilizes Google Maps,
Google Places, and Crimemapping.com APIs
to help determine the best way to get from
point A to point B, even if it means making
the route a bit longer in the process.

« Safe Navigation in Urban Environments: This
is a application that utilizes crime data to pro-
vide safe urban navigation. Specifically, using
crime data from Chicago and Philadelphia, its a
developed risk model for their street urban net-
work which allows us to estimate the relative
probability of a crime on any road segment.

IV. SERVICE USERS

The service is useful for every individual today
who travels with the help of mobile maps.Its very
useful those who is new at a particular area/city.
All the everyday commuters such as taxi drivers,
pedestrian and tourists are the users to whom this
service will provide the safest and shortest route.
Apart from this it might help government to employ
more security protocols on the routes those are
marked unsafe by this service.

V. DATASETS AND FORMATTING

We collected crime and accident data sets from
data.gov website. Data.gov is the official website of

US Governments for open data. We collected data
sets for various cities like New York, San Francisco
and Baltimore. For implementation purposes, we
decided to stick with only one city. We choose Bal-
timore city and used all its crime and accident data
during implementation of this project. We collected
crime data which had 27000 crimes over the last 2
years. We have also collected accident data which
has more than 5000 records for last 2 years alone
in Baltimore. We collected all this data in well-
structured CSV files. We also need to collect data
for police and health care service in Baltimore city.
We collected this data using Google Places API. We
implemented this API and dumped all data in CSV
file which contains almost 1000 entries for police
and healthcare services.

Though all CSV files were well-structured, we
had to change the structure of CSV files to make
spark computations faster. These files stored latitude
and longitude in single string format. For example,
(12.33223 -12.2323). We needed these strings to
be separated into different columns. So, we wrote
a python script which reads input CSV file and
converts it to custom structure specified by user.
We performed this cleaning operation for both crime
and accident records.

VI. APPROACH

Here’s how we planned it to build :

An aim it to build a product which will allow
an user to enter a current or start location, along
with a desired destination and then by algorithmic
processing it will select and suggest the route that
ranks highest on a ”safe score” attributed to each
route by the software. Safe route recommender con-
sists of three main parts: one that is responsible for
computing the safe score of routes through big data
computations, another part is find trade of between
short and safe route using several algorithms and
lastly to represents the different routes according
to the results computed and recommend the route
neatly on friendly user interface.

The algorithm techniques to generate the safe
score of every path between source and destination
consumes the input information as set of datasets
mentioned above. These data sets have been col-
lected from the authenticated government sources.

And processing these information it will help to de-
termine the safeness of the routes. Additionally, we
have used Google API’s to get the different routes
between source and destination. This API provides
meta data about the paths as a response so it again
helps to get the distances between two paths. So
processing the API results by different algorithms,
its possible to generate the trade off between short
and safest path which ultimately helps commuters
to have short and safest and wonderful travel. The
service which we built that locates the user and
allows to find him/her the efficient path between the
current and destination location. We are using the
big data computation technologies such as Hadoop,
Spark for the algorithmic computations. To work
out whether the routes chosen by the algorithm are
really safe and short, we have considered the data
of a particular location and verifying the results.
We are showing the final results on the mobile
application with user friendly map interface. We
have also build a software technique which allows to
handle large number of requests and those requests
for which currently safe factor is not present in the
system. Overall systems aims to provide the better
user experience and recommend the safe path by
processing authenticated data.

VII. WEB SERVICE ARCHITECTURE

We have designed our system using three tier
software architecture. We have developed an
android application which is a presentation layer of
our system. Our logic tier is responsible for request
handling, algorithmic computations and response
generation. Finally, data tier is divided into two
main parts. First part consists of traditional NoSQL
database which processes and returns all data in
real time. Second part consists of Big data stored
in Hadoop clusters. This data is used for safe
score generation. Details of Safe score generation
and data processing will be explained later in this
paper.Our system provides an elegant interface to
the users of this application. User provides a source
and destination location as an input from android
application. Then our android application makes a
service call to application server by using REST
protocol. This call is uses HTTP GET method for
sending request parameter to server in form of
JSON string. Using these input parameters, our

web service calls Googles maps API to fetch all
possible routes between source and destination.

Discover by

] Publishing
uDDI ﬁ Directory server 1WSDL

MOBILE App | [P [
| Interface 3 m
Apache Web Server
|
{ | MongoDB

—

Safe score
of path

DATA CLUSTER

Python Application
Server

HTTP CLIENT

SPARK " HADOOP = =

Fig. 1. System Architecture

Once we have all routes, we fetch safe score for
each route from MongoDB and then we apply our
approximation technique to suggest best possible
routes for travel. Our service returns these paths in
encoded polyline string in JSON format to android
application. Then android application decodes these
encoded polyline strings and convert each route to
actual location co-ordinates for plotting them on
map.

As mentioned previously, we have divided data
layer into two main parts. First part consists of
MongoDB - NoSQL database which we have in-
cluded to process all real-time requests. Currently,
MongoDB layer only stores route information and
count for crimes and accidents happened on that
route. Second part consists of Hadoop cluster and
Spark. This layer stores crime, accident, healthcare
and police services data. This is nothing but Big
Data in our system. We are processing this big
data using Spark scripts which are responsible for
generating counts for every route that comes as
request. We have designed caching approach by
which both these layers communicate with each
other. This caching approach will be explained later
in this paper.

VIII. TECHNOLOGIES

We have used various technologies to develop
this system. We will be listing all technologies per

logical tiers.

A. Front End

We have developed an Android application as a
front end. This application has used technologies
such as Java8, Google maps API, Google Volley
and material design etc. Google maps and Volley
API has been used for plotting routes on maps
and providing auto complete functionality for users
input of source and destination locations.

B. Back End

We have developed our web service using Py-
lons Python web framework for developed ser-
vice oriented applications. Pylons application are
developed in Python language and runs with a
utility called as Paster. We have also used pymongo
database driver for communicating with MongoDB
from pylons application. Additionally, we have used
useful python libraries such as Google Maps server
side API and hashlib. As mentioned previously, we
have used NoSQL database MongoDB 2.4.9 for the
development of this project. We have used inbuilt
utility in MongoDB called as mongo client for
development and debugging of our application.

C. Big Data

We have used Hadoop clusters to store data from
various source such as crime and accident. We have
used Hadoop 2.7 for development of this applica-
tion. We stored structured data in csv file format
in HDFS using PUT command provided in hadoop
binaries. We have used pyspark on top of HDFS to
fetch and process data from HDFS clusters.

D. Production Environment

We have deployed this application on public
cloud using Amazon web services. We have used
EC2 micro instance to host our application. We have
also deployed our android application on Google
play store and its publicly available in all countries
in the world. This application currently runs on an-
droid mobiles and tablets. We have also configured
single node cluster running Hadoop and spark jobs.

IX. IMPLEMENTATION DETAILS

We have used modular approach for development
of this project.

SafeRoute

Hanover
R : & @®
Bel Air
-ederick A
SoPLs 755, Toméson
@ 'imore
o
C Vb,
@ T
Rockville
o
3 safest
Washington e,
] med safe

unsafe

o

REQUEST SAFE PATH

Fig. 2. User enters source and destination

In following points, we will be discussing de-
velopment of every module in detail in terms of
technical implementation and challenges.

A. User Interface

The project is mainly focused on map navigation
so most handy interface was an mobile app. We
have developed an android app - SafeT, for showing
the safe routes to user. Here user enter source and
destination. Figure 2 gives the screen shot of the
user input screen.

QW " 4125

inn

Inner Harbor
Baltimore, MD, United States

Inn at The Colonnade Baltimore - A...
West University Parkway, Baltimore, MD...

Inner Harbor East Academy
North Central Avenue, Baltimore, MD, U...

Inner Harbor
Baltimore, MD, United States

Inner Harbor East
Baltimore, MD, United States

Holiday Inn Inner Harbor
West Lombard Street, Baltimore, MD, U...

Inner Harbor Marina-Baltimore
Key Highway, Baltimore, MD, United Stat...

Fig. 3. Google places suggestions

We have integrated Google Place API to provide
user with real places suggestion . This is show in
figure 3. When the user enter source and destination
and requests to see the route. The request is sent to
the web server. The app then receives Json response
of the routes which are in the form of polyline string
and their respective safe scores.

We use Google Volley API for communicating
with the server.The detailed format of response is
explained in later section in paper. Polyline encod-
ing is a lossy compression algorithm that allows you
to store a series of coordinates as a single string [4].
Point coordinates are encoded using signed values.
The app then decodes this polyline string to get a
series of latlong points and plots them on the Google
maps. The app uses google maps v2 API for this.
According to safe score the app displays the routes
as follows : Safest - green , Orange - medium safe
, Red- unsafe the output is shown in figure 4.

[] QW " 4125

= SafeRoute
Q Inner Harbor X
Q Baltimore Museum of Art X
HAMPDEN
\ hns Hopkins @
University 3
CHARLESVILLAGE ?% BELAIR - EDISON
Cv ARLE§VILLAGE @

Eastern Ave

unsare

INNER FARBOR

FEDERAL
HILL-MONTGOMERY;

Fig. 4. Google places suggestions

B. Web Service Development

Android application passes the source and desti-
nation input in simple JSON string to web service.
This web service reads these request parameters
from URL and then makes a call to google maps
server side API. Google provides a key based au-
thentication mechanism for performing any type
of API calls. Once the authentication has been
done, google returns client stub authenticated token
which can be used to make further calls for limited
session. Once session expires or web service loses
request instance, one must reauthenticate for making
future API calls to google maps. After successful
authentication, our web service passes source, desti-
nation and authenticated token to Google Directions
API which in turn returns the huge JSON route
array as output. Each entry of this array contains
route information, polyline string and distance. Our
web service extracts polyline string and distance
for each route and stores this in temporary data
structure. As explained in last point, polylines are
encoded strings which stores series of latitude and
longitude in smaller length string. Our web service
further convert these polylines into secure hash of

32 bits using RSA md5 encryption technique. We
have converted these polylines to hash keys as we
must uniquely identify each route in our system.
We could have used polyline strings as a unique
identifier, but performing long length and string
intensive queries in not recommended approach in
MongoDB. So, we converted these polylines into
manageable hash keys and stored them as primary
key for each route in our database.

Our web service then makes a search in database
with hash keys for every path to fetch crime count,
accident count and healthcare services. These counts
are generated from processing of crime and hospital
data in Spark and then updated to MongoDB. How
these counts are generated and for which routes its
generated will be explained in further sub points.
For simplicity, we will be assuming that we get
some count value for crime and accident for every
route searched with unique hash keys. Web service
then applies weighted average algorithm on them
to generate safe score levels for every path. This
algorithm is explained below in detail. These algo-
rithm considers both safety and shortness factor and
makes a best possible sequence of routes for travel.
Here challenge was to balance out both factors
and make best choices. Details of this algorithm as
follows:

C. Safe Score Generation Algorithmic Techniques

1) Weighted Average Algorithm: We have cho-
sen a weighted average technique cause its more
accurate measurement of scores or investments that
are of relative importance to each other. It is very
similar to an ordinary arithmetic mean (the most
common type of average), except that instead of
each of the data points contributing equally to the
final average, some data points contribute more than
others. So it can also be considered as priority based
average algorithm. In case of recommending safe
route, let see how this technique helps in determin-
ing the safe route among different routes between
two locations.As mentioned in data sets section and
shown in below figure we are using three types of
data which are treated as a factor while computing
the weighted average. On execution of sparks jobs
the generated counts are multiplied by the decided
factor or weight and after multiplication all three
types of scores are added together which decides

the safe score of a path. The priorities or weightage
of these factors are decided in percentages. While
testing we have given the 50% weight to crime
events, 30% weight to accidents and 20% to number
of police and health services.

Priority

Crime

X 05 =
5
y,
Accident Wi
— X 03 = 3 Average
~// (5+3)-2/3
Hospital
X 02 = *
Police
/ 2
/
.,//

Fig. 5. Weighted Average Technique

These weightage decided in a such way that,
crime events happens intentionally than accidents
so giving higher priorities to those and safety
services also plays major role in deciding the
safeness of routes. Multiplied scores of crime and
accidents are added as they contribute to unsafeness
of the route and police and health services score
are subtracted in weighted average calculation
and the result is divided by the number of factors
which is 3 gives the final result as a safe score
of a single path. This way every path is given as
a input to weightage average algorithm and safe
score of every path is calculated individually which
is processed in further algorithm. Web service then
passes these generated safe scores and distance for
each route to our custom approximation algorithm.
This algorithm considers both safety and shortness
factor and makes a best possible sequence of routes
for travel. Here challenge was to balance out both
factors and make best choices. Details of this
algorithm as follows:

2) Approximation Algorithm: Since both the
length and the risk of the path are equally important
but cannot be combined into a single objective, the
application’s approach the urban-navigation prob-
lem as a biobjective shortest path problem and
results in recommending a path that provide trade-
offs between distance and safety. This algorithms is

responsible for finding the trade of between two dif-
ferent factors as short and safe route. The outcome
of this algorithm helps to suggest a path to the user
among different paths suggested by Google API.
The mathematical definition of approximation algo-
rithms is the algorithms used to find approximate
solutions to optimization problems and these are
usually considered as NP-hard problems i.e. these
problem have several different efficient solutions.
For Safe Route Recommendation, to find the
approximation between safe and short, we want the
one provable solution that will provide the convinc-
ing quality result. While developing the algorithm,
we came across three different cases as follows:

1) The generated safe score of a path is much
less but the distance of a path is much more
that two paths recommended by Google ser-
vice

2) The generated safe score of a path is higher
i.e. path is more unsafe but the distance is
very short compared to other paths

3) The resulted safe score of a path and distance
both are moderate compared to other paths
between same source and destination

So to build a solution which will provide both
the short and safe journey, we came up with our
own algorithmic approach. As the main aim of this
project is to recommend the safest route, we gave
the high priority to safe score and then considered
the short distance whenever possible. Hence, going
forward with this approach, whenever we came
across the case 2 mentioned above, we eliminated
the same choice in first iteration cause it completely
contradicts the main goal of project. We never want
to recommend the unsafe path to user even if he/she
needs to compromise in the distance of a journey. So
at situation we only left with two cases i.e. 1st and
3rd mentioned above. We came up with solution that
if the safe score of two paths are of ratio 2:1, then
will consider the path which is more safer among
them for eg. if safe score of route A is 20 and
safe score of route B is 43 then as the safe score
difference is more than the double hence we will
recommend the route A to the user even if there are
noticeable differences in their distances.

Paths Distance

Paths and

. * Prioritize w.r.t Safe score their

Score significance

* Calculating the safe score

Path 2 differences between paths »

Score

¢ If discrete score differences
then returning only Safest

¢ Else finding trade off
between Short and Safe

Path 3
Score

Fig. 6. Approximation Algorithm Technique

On the other hand if safe score difference between
paths is less than the double, then will recommend
the path which is more shorter and take less time
for travel.

Execution of approximation algorithm generates
a sequence of routes such that safest and shortest
will be first, then second and so on. Finally, our
web service makes JSON array of these polyline
sequences and returns it to android application.

D. Path Caching

As mentioned in point B, we fetch crime, acci-
dent and healthcare services count from MongoDB.
But generation of these counts involves big data
processing of crime and accident data and caching
mechanism. Our application works in real time and
needs to generate output in few seconds. Upon
request from user, it is impossible to generate counts
for crime and accident by iterating over big data.
Moreover, it is also impossible to preload crime and
accident counts for every possible source and des-
tination locations in world. So, we have decided to
use MongoDB which serves all application queries
in real time and caches paths for which counts are
missing. We call table as Path Cache. When periodic
spark job runs, it fetches entries from Path Cache
table and generates count for each path by iterating
over crime and accident data. Then this job updates
the MongoDB Paths table with updated counts. It
also deletes the entries in path cache table.

Future
ég Request will

be served Il |
J ScoreinDB

SAPACHE&

por

App

Check if path score
request

is present in DB

-Return If “No” - Pathis
cached for
calelating the safe
score by Spark

jobs

If “Yes”
path output with
i safe scores

Fig. 7. Caching Approach

If crime count or accident count is not present,
then we show routes based on shortest distance
only. After spark job execution, all future requests
for that source and destination will be served from
MongoDB with updated crime and accident counts.
In this way, this system will generate more scores
as it receives more requests.

E. Count Generation

Above points mentioned that we are generating
safe score from crime, accident and healthcare ser-
vices count. These counts are generated by iterating
over big data. Below point will explain this process
in detail. Currently, we have dumped crime, accident
and healthcare services data in HDFS. This data
is well structured and stored in CSV file format.
Additionally, we have designed three spark jobs
for each source of data which are responsible for
counting the total number of crimes, accidents or
services on that path.

As explained in last point, spark job iterates over
path cache collection to read polyline of every route.
Then our spark job coverts these polylines into
actual latitudes and longitudes. We have used poly-
line python library which decodes these polylines
to convert them to actual co-ordinates. Our data
files have latitude and longitude for every crime
and accident incidence. So, our job then loads these
series of latitude and longitude from data files in
Spark RDD object. Then job iterates over each
entry in RDD object and tries to match with input
route coordinates. Here, the real challenge was to

figure out the factor for matching. We cannot simply
search the exact co-ordinates of crime records with
route co-ordinates.

Map of each
route
P[]

Reduce by
» count
P1[10]
Pn[20]

‘ Spark Job for Crime Data
Path 1 A

{(X] IY]) —‘

1 (x2y2} Read || Pafl,]

" Hors

| Spark Job for Accident
~ | Data

T | HDFS

Reud: N

Map of each
Lo Reduce by

PI[IL » count
P1[5]
Pn[4]

Pn[i,w,.]

Path n

Spark Job for Police Data Mapiet each

T HDFS

Read || |

{(p] Iq.I) 1
(p2,92)}

Reduce by
count
P1[2]
Pn[8]

route

P

Pall1.]

Fig. 8. Hadoop Architecture

Because practically, possibility of crime happen-
ing near the road is greater than happening on
actual road. Therefore, exact match would not have
worked. So, we decided that we will search around
200 meters of given path. So, for searching within
200 meters, we calculated the difference between
crime location and current path coordinate. For
calculating this difference, we have used geopy
python library. This library calculates the difference
between two methods using great circle method.
The great-circle distance is the shortest distance
between two points on the surface of a sphere, mea-
sured along the surface of the sphere (as opposed
to a straight line through the sphere’s interior).
Once we have the distance, we compare with 200
meters and if its less than that then we count that
record as crime happened on that path. In this way,
we calculate crime and accident counts for every
path and updates them to MongoDB upon finishing
calculation.

X. SOURCE CODE AND PLAYSTORE LINKS

We have used GitHub to host our source code.
This source code is currently availably publicly.
Following are the links to source code:

https://github.com/Pratikgit/SafeRoute_backend

https://github.com/Pratikgit/SateRoute App

We have also deployed our android application on
Google Play Store. Here is the link for downloading
the application.

https://play.google.com/store/apps/details?id=
edu.umbc.smartroute&hl=en

XI. RESULT AND ANALYSIS

In this section, we present an experimental assess-
ment of our proposed methods. Our main objective
is to evaluate the practical utility of our algorithms.
We focus on two aspects: (i) the representativeness
of the small set of paths that our algorithms return
and (i1) their Back end processing using Spark jobs.
We build our evaluation benchmark by sampling
co-ordinated paths of 4 localities in Baltimore for
which we have collected the required data. On pro-
viding any source and destination of these areas as
a input to mobile application generates the effective
result which we have verified with the safe score
generated at the back end system. These results
shows provable path recommendation before and af-
ter applying the safe route computations. Following
are the few sample results generated at back end
while processing the inputed co-ordinates:

Web Service Request

http://ec2-35-161-196-226.us-
west-2.compute.amazonaws.com:5000/safe_controller/index?
source=Inner%20Harbour’%20Baltimore&destination=4773%
20Chapel%20Square

Fig. 9. Web Service Request

Web Service Response

{"routes":

["y~wnF'mrrM_LcCxUna@pd@jl| | @ pn@iQh_CjCxx@voAxvBhGzaB_|BfiEwcBriBugBj[{ChcCha@ 'WE'_@faBKb_
G}v@IkDhTxkCyvAx'Ly~BnnLchBxoNwo@fzCvC|hD}z@xIDtCbkAgaArbF_

\\“rFiu@nxE{q@ | hAMR oHzc@jmGgg@r FucC'ICmgAbPyi@zfAkoAlo@_jCjwD_sAfcD{iAvyBs}@xaAcvC|x@oo
AbXaxCfuBoeChiFiQj'HaUdpF[dICcd@ju@_hB|}

Co'A™tBodAj' DaijK\(Avax| @janHrrB“RJpBld@chqlB|wa|DfIHyFAva{n@ka}d@JhA)

2@xrCjJr' DoPriBtIAl W\ BI}DWTr{Bv[zkAvOdqEts@nzAfmBbgAjy@~'A}
WI|AgGdzA_ o@bw@uZNbleAJE L||AankD 0@pjBwQhuB}In@zIDxeBdcDn @fiBbpBIkFvAvx@_Op'Ah@n}
B~MCVnCAFjpAjt@ | fEKCjaBve@ | “AulfeCol{CnUd | BtA~}
BcD'aB{VzmAmeAtr@o_ABah@'c@{gC|yArY'yEjCrplav@dpHsPrxDkArwEp}@hoDrZn{AcDjaBwpAdjCiZbvCeSdt
ChZx'BtCdgApo@hoAjdAx{D |_BhoBnFxgExm@rlAi~@hvEpXrbDIQImGgd @nfGXEhbCiCdtAre@IbAgGxrCyc@'™
AbVAIIEIh@ppLk]'ICIH | kBnB~kAwOVkBsbAbfAp}@rbDzuAngAxhB'j@jm@~p@fbC'ICjgAjl fApUEVPrx@dt@b[xn
C~T|rArnA|gAbcB]

bsCpg@dgDv~@rf@xnAfrAfMh| @ny \j frB’hBhmCIxBlzEth@rlApyA | @ pxBxZhkHfxAvdCjjB~pAfoCxc@
tbBbhBjWjkDpq@r~@oTvsBjgAfyEl}BvuA|}BdIBnlAnhCz | A~x@ImA | gBfdArsC'\\fxB~jAd}

Bo[znAnfBdrCvsAl@ | _B'ZduBgF|xC|jChhBj~CIr@fe fZpdAt: N i@blAh_@bz@pvArs@ eGxt@zmB

~mAnu@xm@fEfw @x~@x{AvjCdhD TIpAvlp | @cd @f}

B'a@dxBpuAvmB_ZjyAqGzIAmgA | I@gb_AtNjzAfoCjeA | kKDt @nbAtz@nz@pYvs@uLrx@:z@ju@jW p@cwB_@
wY_DoUka@gx@Es_@'a@m_@fCek@}Xmh@xO}jBzf @ qZjp@pQfT",
"y“wnF'mrrMee@kV_XxlcaAf[mbC™~|C_vEbz@eqEzfB}

kBg kn@snBcoA__AcsA|L_aAl|A{n@b | @gjCda@kxAtGk{B{f@{ Bh]
izCuCw{ApdAghBqYamAevAavBp_AquC{RudAoyA}fDye@{IBs/kdBtiAgoDbm @geHd fvBe| @f]
eiAw[}~Aly@axBmEenA}

hAu_AwoAomBre@_~B~bBuPxnDwuOrgDyoHfxDy 'F'pEa | ExxCawBv'E{a@q) | Hfc@bbB~2GuzvzB~RhiHfAlaB{{
@ftGsbCniMtZ|alhwAzk) | m@~r[jtAf*NvkCtdYImA | gDjs@fIC}
zAnsHb{@d{BveCtwDbq@ | vDxdDxwGvAbdBgPl| CdyAdjBtS |iEla@ | vAzm@heCvnBffDnivrE}

Fig. 10. Web Service Response

XII. FUTURE WORK

While experimenting we dealt with sample
amount of data which is comparatively small in
amount hence, we plan to scale the system and
find and prepare scores for most popular cities like
New York, Los Angeles etc. and feeding them into
the system so that safe score will be generated for
those routes. Additionally, we plan to enhance user
experience, application’s processing speed and build
similar application for 10S users.

XIII. CONCLUSION

Created a mobile application that recommends
different routes between source and destination ac-
cording to their safety score, which is devised from
algorithmic computation on authentic big data by
using Hadoop Spark cluster processing. The factors
deriving safety score of different routes are Crimi-
nal, Accident cases as well as number of Police and
Healthcare services.

XIV. ACKNOWLEDGMENT

We would like to thank Dr. Milton Halem for his
direction and encouragement over the course of this
project and his teaching assistant Yin Huang for his
lectures on Hadoop, Spark big data computation and
continued support during the project.

(1]
(2]
(3]

(4]

(5]

(6]
(7]
8]
(9]

(10]
(11]
[12]
[13]
(14]
(15]
(16]
(17]
(18]

(19]

REFERENCES

Esther Galbrun Konstantinos Pelechrinis Evimaria Terzi. Safe
Navigation in Urban Environments

Evangelos Kanoulas Yang Du Tian Xia Donghui Zhang. Find-
ing Fastest Paths on A Road Network with Speed Patterns
Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, Ion Stoica. Spark: Cluster Computing with Working
Sets

MICI3EL X. GOEMANS, DAVID P. WILLIAMSON. Im-
proved Approximation Algorithms for Maximum Cut and Sat-
isfiability Problems Using Semidefinite Programming

Gerrit Sorensen Matthew Blake James Archibald Randy Beard.
Safe-Path Graph Generation for Path Planning in Urban Envi-
ronments

Ilias Diakonikolas. Approximation of Multiobjective Optimiza-
tion Problems

Michael Huhns Munindar P. Singh. Service-Oriented Comput-
ing: Key Concepts and Principles
https://data.cityofnewyork.us/Public-Safety/NYPD-Motor-
Vehicle-Collisions/h9gi-nx95/data

Daniele Quercia, Rossano Schifanella The Shortest Path to
Happiness: Recommending Beautiful, Quiet, and Happy Routes
in the City
http://hadoop.apache.org/docs/r2.7.2/hadoop-project-
dist/hadoop-common/SingleCluster.html
https://spark.apache.org/docs/0.9.1/python-programming-
guide.html
http://www.worldatlas.com/articles/most-dangerous-cities-in-
the-united-states.html
https://www.neighborhoodscout.com/neighborhoods/crime-
rates/top100dangerous/
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates
https://developer.android.com/index.html
https://developers.google.com/maps/documentation/directions/
http://www.movable-type.co.uk/scripts/latlong-db.html
http://dfw.cbslocal.com/2012/01/17/app-that-would-guide-
users-away-from-high-crime-areas-proves-controversial/
http://www.wionews.com/science-tech/five-quirky-start-up-
ideas-from-techcrunch-disrupt-that-you-should-know-about-
6319

