
DockSNAP : Performance Monitoring of Docker Systems

Pratik Bhangale
Computer Science, UMBC
Email: pratikb1@umbc.edu

Vishal Rathod
Computer Science, UMBC
Email: vishalr1@umbc.edu

Mayure Pate
Computer Science, UMBC
Email: mayurp1@umbc.edu

Abstract—Over the last decade , the use of virtualization and
container based technologies has increased dramatically. Con-
tainer based virtualization and hypervisor-based virtualization
are two main types of virtualization technologies popular in
market. Of this two, container based docker systems are very
much poplar today. Docker containers wrap a piece of software
in a complete file system that contains everything needed to run:
code, runtime, system tools, system libraries anything that can
be installed on a server. This guarantees that the software will
always run the same, regardless of its environment. Due to this
there is demand for efficient monitoring tools for the docker
containers. But existing solution to monitor the docker containers
requires entering command line commands to see the status of
containers. In this paper we propose the Push based system to
see the status of various containers on a web based interface. The
monitoring stats gives details about (1) CPU (2) Memory usages.
Furthermore, the paper also discusses and identifies what could
be done to improve such systems.

Keywords—Containers, Docker, Monitoring Client, Virtual-
ization, Web Service

I. INTRODUCTION

Virtualization technology uses a software to simulate the
existence of hardware and other resources to create a virtual
computer system. Doing this allows businesses to run more
than one virtual system which has multiple operating systems
and applications which are running on a single server. This
helps with numerous things. Companies can save on large
expensive resources and and it also helps with low costing Web
services. The last decade has seen an impressive development
in the area of virtualization technologies, which allow the
partitioning of a computer system into multiple isolated virtual
environments. Virtual machine migration is truly enabling
attribute of virtualization technology. As this emerging tech-
nology matures, it will become even more popular. One of the
important reasons big companies adopting the virtualization
is server virtualization in data centres. Server virtualization is
the partitioning of a physical server into smaller virtual servers
which helps the companies to maximize the server resources.
In server virtualization the resources of the server itself are
hidden, or masked, from users, and software is used to divide
the physical server into multiple virtual environments, called
virtual or private servers.

Current Virtualization techniques can be classified in two
major types: container-based virtualization and hypervisor-
based virtualization. Container based virtualization is at the
operating system level, while the hypervisor based system pro-
vides virtualization at the hardware level. Thus the container
based solution is more lightweight and efficeint. One of the

most popular container based system is Docker. One of the
important need for such systems is to constant monitor the
systems and view its stats. Existing solutions to monitor the
docker containers requires entering command line commands
to see the status of containers. In this paper we propose and
describe the details of new push based system that allows
to display the status of various containers via a Web-based
interface.

The paper is structured as follows: Section 2 provides
motivation for developing the docker performance monitoring
tool. Section 3 gives an related work about other docker
monitoring tools. Section 4 provides background and com-
parison of virtulization and docker based techniques, and then
in further sections we elaborate the docker implementation
and the followed approaches along with the security level of
Docker and what could be done to raise its level of security.
The paper concludes with a summary in Section 14.

II. MOTIVATION

Docker shook the DevOps world. Containers ready for
cloud architecture brought production operations closer to
development and helped make microservices the backbone
of a more flexible, aggressive approach to build software
architecture. Running various applications in Docker
containers only changes how they are packaged and
scheduled - not how they run. How do I monitor Docker in
my production environment? this is the major concern for
system administrators and DevOps . System administrators
have to enter the commands on terminal to view the stats on
console. Clean web interface for monitoring multiple clients
is missing . This is the major motivation for developing
such systems. Docker shook the DevOps world. Containers
ready for cloud architecture brought production operations
closer to development and helped make microservices
the backbone of a more flexible, aggressive approach to
build software architecture. Running various applications in
Docker containers only changes how they are packaged and
scheduled - not how they run. How do I monitor Docker in
my production environment? this is the major concern for
system administrators and DevOps . System administrators
have to enter the commands on terminal to view the stats on
console. Clean web interface for monitoring multiple clients
is missing . This is the major motivation for developing such
systems.

III. RELATED WORK

This work is inspired by the recent successes in many open
source docker monitoring tools and utilities. Docker is being
used in more and more production deployments. As such, the
ecosystem surrounding Docker is picking up the gauntlet by
creating more and more solutions for monitoring which is cru-
cial for keeping tabs on a Dockerized environment and gaining
visibility into the state and health of containers. cAdvisor
(Container Advisor) provides container users an understanding
of the resource usage and performance characteristics of their
running containers. Daemon which is running collects then
aggregates, processes, and exports information about running
containers. Specifically, for each container it keeps resource
isolation parameters, historical resource usage, histograms of
complete historical resource usage and network statistics. This
data is exported by container and machine-wide. Dynatrace
offers a powerful solution for Docker monitoring by pro-
viding users with high-level metrics that are crucial from a
business perspective together with extremely detailed insights
on containerized services. Docker users see information that
is specific to images and containers such as the numbers of
images being used, running containers, and per-microservice
metrics. Sysdig is started as an open source project that
focuses on monitoring microservices, Sysdig sees inside your
containers without instrumenting them, says Daniel Liong, a
member of the Sysdig product team [12]. What this means is
that instead of installing an agent on your Docker host, the
Sysdig agent sits at the operating system level so instead of
looking from the inside, Sysdig looks at the containers from
the outside.

IV. BACKGROUND

A. Virtualization Vs Container based

Current Virtualization techniques can be classified in two
major types: container-based virtualization and hypervisor-
based virtualization. Container based virtualization at the
operating system level, while the hypervisor based system pro-
vides virtualization at the hardware level. Each approach has
its own significance.

Container-based virtualization application is an OS-level
virtualization method for deploying and running distributed
applications without launching an entire VM for each appli-
cation. Instead containers run on a single control host and
access a single kernel. Here containers share the same OS
kernel as the host, and thus containers can be more efficient
than VMs, which require separate OS instances. Containers
hold various components such as files, environment variables
and libraries. The host OS also constrains the container’s
access to physical resources such as CPU and memory so
a single container cannot consume all of a host’s physical
resources. Each approach has its own significance. Container
based virtualization is lightweight virtualization in which host
kernel OS runs various multiple environments. Containers are

nothing but virtual environments. Linux-VServer [1], OpenVZ
[2], and Linux Container (LXC) [3] are three main approaches
for this representation.

Fig. 1. Architecture of Container-based Virtualization

In contrast ,Hypervisor establishes complete virtual ma-
chines (VMs) above the host operating system (Figure 2).
Hypervisors use a thin layer of code in software or firmware
to allocate resources in real-time. There are two types of
hypervisors: Type 1 and Type 2. Type 1 hypervisors run
directly on the system hardware. They are often referred to
as a ”native” or ”embedded” hypervisors in vendor literature.
Type 2 hypervisors run on a host operating system.

Fig. 2. Architecture of Hypervisor-based Virtualization

When the virtualization movement first began to take off,
Type 2 hypervisors were most popular. Administrators could
buy the software and install it on a server they already
had. Xen [4] is an example of the Type 1 Hypervisor and
KVM [5] is of the Type 2 Hypervisor. Since the Type 1
hypervisor does not include an extra layer of the host OS,
it provides better performance than the Type 2 hypervisor.
Container-based virtualization also offers better performance.

This has been demonstrated by experiments in some recent
studies [5,6]. These studies show that the performance of
container-based virtualization is better than with hypervisor-
based virtualization in most cases, and it is almost as good as
native running applications.

B. Docker Overview
Docker is an open source container technology with the

ability ”to build, ship, and run distributed applications” [6].
Docker containers wrap a piece of software in a complete
filesystem that contains everything needed to run: code,
runtime, system tools, system libraries anything that can
be installed on a server. This guarantees that the software
will always run the same, regardless of its environment [6].
Although container technologies have been around for more
than a decade, Docker - is currently one of the most successful
technologies since it comes with new abilities that earlier
technologies did not have.

According to industry analyst firm 451 Research, ”Docker is
a tool that can package an application and its dependencies in
a virtual container that can run on any Linux server. This helps
enable flexibility and portability on where the application can
run, whether on premises, public cloud, private cloud, bare
metal, etc.” [7] .

Docker consist of 2 major components : Docker Engine and
Docker hub this will be described in next sections.

C. Docker Engine
The Docker Engine is a lightweight and powerful open

source containerization technology combined with a work
flow for building and containerizing the applications. Docker
Engine is a client-server application with these major compo-
nents:

• A server which is a type of long-running program called
a daemon process.

• A REST API which specifies interfaces that programs can
use to talk to the daemon and instruct it what to do.

• A command line interface (CLI) client. [8]

Fig. 3. Architecture of Docker engine

The Docker containers run on top of the Docker daemon
which is in charge of executing and managing all of the Docker
containers. The Docker client contains a UX for interacting
with containers to Docker users, accepts commands from the
users and then sends it to the Docker daemon through RESTful
APIs

D. Docker Container

A Docker container is a runnable instance of a Docker im-
age. You can run, start, stop, move, or delete a container using
Docker API or CLI commands. When you run a container,
you can provide configuration metadata such as networking
information or environment variables. Each container is an
isolated and secure application platform, but can be given
access to resources running in a different host or container,
as well as persistent storage or databases [8].

A container uses the host machines Linux kernel, and
consists of any extra files you add when the image is created,
along with metadata associated with the container at creation
or when the container is started. Each container is built from
an image[8]. The image defines the containers contents, which
process to run when the container is launched, and a variety
of other configuration details. The Docker image is read-only.
When Docker runs a container from an image, it adds a read-
write layer on top of the image (using a UnionFS) in which
the application runs[8].

Fig. 4. Docker Container

Docker launches its containers from Docker images. A
Docker image is a series of data layers on top of a base im-age.
Every Docker image starts from a base im-age, such as CentOS
base image or ArchLinux base image. When users make
changes to a container, instead of directly writing the changes
to the image of the container, Docker adds an additional layer
containing the changes to the image.

Docker takes advantages of two Linux features, names-
paces and cgroups, to safely create virtual environment for
its containers. The cgroups, or control groups, provide mech-
anism for accounting and limiting the resources which the

processes in each container can access. The namespaces wrap
the operating system resources into different instances [11].

E. Docker Hub

Docker hub [9] is a central repository of images (both
public and private), via which users can share their customized
images. Users can also search for published images and down-
load them with the Docker client. Furthermore, users can
verify the authenticity and integrity of the downloaded images
since Docker signed and verified the images when their owner
submitted them to the hub [9].

Docker Hub is a cloud-based registry service which allows
you to link to code repositories, build your images and test
them, stores manually pushed images, and links to Docker
Cloud so you can deploy images to your hosts [10]. It provides
a centralized resource for container image discovery, distri-
bution and change management, user and team collaboration,
and workflow automation throughout the development pipeline
[10].

Docker Hub provides a place for the team to build and ship
Docker images. Docker Hub configures repositories in two
ways:

• Repositories, which allow you to push images from a
local Docker daemon to Docker Hub, and.

• Automated Builds, which link to a source code repository
and trigger an image rebuild process on Docker Hub
when changes are detected in the source code.

V. DATCENTER AND DOCKER USAGE

Nowadays lot of large tech giants like google, facebook
and others are deploy millions of docker instances every
month. Docker Datacenter (DDC) is a container management
and deployment services project from Docker developed to
help enterprises get up to speed with their own Docker-ready
platforms. Docker describes its Docker Datacenter tool as ”an
integrated, end-to-end platform for agile application develop-
ment and management at any scale.” With Docker Datacenter,
organizations are empowered to deploy a Containers as a
Services (CaaS) on-premises or in your virtual private cloud.
A CaaS provides an IT managed and secured application
environment of content and infrastructure where developers
can build and deploy applications in a self service manner
[13].

VI. OUR APPROACH

There are some inbuild commands and console tools avail-
able for monitoring docker instances. Few companies have de-
veloped internal tools for monitoring docker instances. Google
have developed docker monitoring tool called as cadvisor.
This tool monitors the single instance of docker. But this
tool does not provide a way to monitor data centers where
numerous docker instances are running in parallel. Here, we
have developed a push based metrics monitoring system where
thousands of docker instances can be monitored from single

web based tool. We are storing every metrics from all docker
instances to centralized database server. Additionally, we have
built a user interface to view these metrics using various graph
representations.

VII. SYSTEM ARCHITECTURE

We have designed this system by modular approach. This
system involves two independent parts. One part consists of
development of framework which will periodically updates
the central server with monitoring data from multiple docker
instances. Second part is from user point of view which
involves the development of web services and user interface
for displaying monitoring data.

Overall, this monitoring system mainly involves three main
architectural components. They are as follows:

• Monitoring Client
• Web service and Database server
• User Interface
Before we describe all these components in detail, here is

the architecture of our system:

Fig. 5. Complete System Architecture

VIII. SYSTEM DESIGN CHOICES AND
COMPARISON

A. Push vs Pull Based System

In software engineering, the pull model and the push model
designate two well-known approaches for exchanging data
between two distant entities. Normally software systems are
stateless as they use the stateless protocol HTTP. So, once a
request is served to the client then there is no direct way of
notifying him/her about the changes made to the Model. To
handle this scenario there are two mechanisms.

B. Push Based

In the push-based system, the client opens a connection
to the server and keeps it constantly active. The server will
send all new events to the client using that single always-on
connection. In other words, the server PUSHes the new events

to the client. In Pushed based model, the server pushes data
to the client without client explicitly asking for that.

A cron job to push the patch to run servers at regular
intervals so that the required estate is accessed continually at
intervals. So the advantage of using this technique is whenever
the client logs in, he will be running with a new stack and
heap. So there is no need for persistent objects on each request
or managing a maximum amount of concurrent connections.
Additionally, a push-based system puts all the control hands
of the central admins. The problem with push-based systems
is that you have to have a complete model of the entire
architecture on the central push node. You can’t push to a
machine that you don’t know about.

This phenomenon is used to describe the preplanned news,
weather or other selected information that is updated on a
periodic basis on users desktop interface. Push technology
is also a prime feature of Web browsing applications.
Synchronous conferencing and instant messaging are typical
examples of push services.

Fig. 6. Push Based Architecture

C. Pull Based

The pull model is based on the request/response paradigm
(called data polling, or simply polling, in this management, the
client sends a request to the server, then the server answers,
either synchronously or asynchronously. This is functionally
equivalent to the client pulling the data off the server. In this
approach, the data transfer is always initiated by the client,
i.e. the manager

In Pull based system, the initial request for data originates
from the client, and then is responded to by the server.In
this style of network, the client periodically connects to the
server, checks for and gets recent events and then closes the
connection and disconnects from the server. The client repeats
this whole procedure to get updated about new events. In this
mode, the clients periodically PULLs the new events from the

server. The server or publisher does not send information to
the client unrequested.

In a ’pull’ system, clients contact the server independently
of each other, so the system as a whole is more scalable
than a ’push’ system. Downloading Web pages via a Web
browser is an example of pull technology. Getting mail is
also pull technology if the user initiates a request to retrieve it.

Fig. 7. Pull Based Architecture

Today, most software systems only use one of the methods
above and do not implement both push and pull. While in
the first look, it may seem good enough as in both ways you
can achieve the desired functionality. However, some tasks are
better suited by one of them than the other.

The difference is that in push protocols, you get new events
literally instantly. But you may experience a small time delay
in pull protocols. Although this delay can be overcome by
using regular checks for new events so that the time delay is
mostly not noticeable. Pull based is more complicated, as the
data flow of push-based model is only a subset of that of the
pull-based model, hence in result pull-based model contains
additional ”data request”. Additionally,the request for a given
session is initiated by the publisher, which is contrasted with
pull, where the request for the transmission of information is
initiated by the receiver or client.

We cant ignore the fact that push is much better at perform-
ing actions and tasks than the pull is, and pull is superior in
handling request to show some kind of data.

IX. WHY PUSH BASED SYSTEM FOR DOCKER
MONITORING

Push technology offers solutions for the information re-
trieval and browsing off-line problems. That is, once you
get the information from the server, you can access this
information without being connected. Of course, you should

be on-line if you want to get the most recent info. The main ad-
vantages of Push technology is convenience along with instant
transmission of information and efficient in terms of initiating
server connections. Rather than having go hunt for the latest
information, it simply arrives automatically on your computer.
This saves the users’ time since they don’t waste a lot of time
to search for a specific information. Once it is downloaded,
you can browse the content when you are off-line. This is
particularly valuable for users with dial-up connections and
slow connections. In pull-based mechanism, extra connections
are opened, requiring more server resources. This is especially
heavy on servers that rely on a one-process-per-connection
delivery method. Connection setup causes delays. A new
handshake is needed and sometimes a new DNS lookup. While
in the push-based system, the server allows administrators
to tell the client ”you’re also gonna need this” which saves
multiple network connections and network delays.

A. Push Based System Approach For Docker

Fig. 8. Docker Push Based Architecture

Above figure represents how the push-based system is
implemented for docker monitoring. As explained in the
service architecture, each individual docker image will be
installed on every docker machine. This image is responsible
for fetching the current status of every container installed
on docker machine. The status will be in form of current

processes running on docker machine, CPU utilization, mem-
ory details of a particular docker machine. So, there can be
any number of docker machines where this image can be
downloaded and executed. Also, this image will be responsible
for periodically notifying the current status of docker machine
to the centralized server as mentioned in above figure. This
centralized server will have a database which will be updated
as soon as client docker machine notifies its status to the
centralized server. This database will play a role of fetching
and showing the current status of a particular docker machine
on Web Application. The status fetched from an individual
machine will be of particular time duration such as past
half and hour to several hours. Additionally, as observed the
advantages of the push-based system, this architecture helps in
getting the current status of all the docker machine whenever
system admins logs into the server i.e. administrator does not
require to establish a connection and ask for current status on
every docker machine.

Also, if any docker machine is failed to establish the
connection with the centralized server, it will not at all affect
the overall system and user will be still able to get the
monitoring metrics for other docker machines.

B. Error Handling for Push-Based Architecture

What if the centralized server which is collecting the status
from every docker machine gets down or the connection is
failed between a docker machine and a centralized server, to
handle these failure cases or erroneous condition lets find out
the recovery mechanism to keep the system alive.

The server can reconstruct its state by polling its clients.
Since the server may lose the information about the clients,
and then it may not be able to poll all the clients. One possible
solution is to broadcast a recovery message to notify clients to
report their cache information. However, this approach has two
problems. First, since we are using pushed based approach,
clients need to access the reverse control channel to get the
permission to use the uplink channel, it may result in lots of
collisions if they respond to the recovery message at the same
time. Second, due to disconnections, there is no guarantee that
all clients will respond the recovery and then the server may
not be able to collect all the necessary information about the
clients. Due to the problems or overhead associated with the
above solutions, we propose to apply a stepwise approach to
address the server failure problem.

We propose a caching based approach for the centralized
server to store the incoming monitoring matrics from the
individual docker machines. This cache will be useful to
serve the request from system administrator as well as to
recover the missing requests whenever the centralized server
gets fail. This cache system will simply be a database server
which will keep on updating along with the database of the
centralized server. Every docker machine has to maintain
a connection with the cache server as well. The another
advantage of having such caching server is that if a load of
polling increases on a centralized server, cache serve might
help to handle the extra overhead of the load and can serve

the requests from the administrator for some time or can store
the monitoring statuses from docker machines. This approach
is healthy enough to handle the failure conditions as well as
load balancing.

C. Communication Framework of Docker machine and Cen-
tralized Server

For communication between every docker machine and the
centralized server, we are following HTTP. So first let’s get
introduce to how network communication takes place in the
same and its details. It is a short for HyperText Transfer Proto-
col. HTTP is the underlying protocol used by the World Wide
Web and this protocol defines how messages are formatted and
transmitted, and what actions Web servers and browsers should
take in response to various commands. It’s an application layer
protocol that is used to transmit virtually all files and other data
on the World Wide Web, whether they’re HTML files, image
files, query results, or anything else. Usually, it takes place
through TCP/IP sockets. TCP transport service uses sockets
to transfer the data. The client initiates the TCP connection
by using sockets on port 80 to the server. Then the server
accepts the connection from the client. The client requests with
the HTML pages and the objects which are then exchanged
between the client browser and web server. After completing
the request, the TCP connection is closed. It is a stateless
protocol. It does not keep user information about the previous
client requests. So, this protocol is simple but if you have
to maintain the past client records then it is complex. Since
the server will maintain all the client requests and when the
server crashes, it is very difficult to get the information back
and makes the system very complex.

HTTP clients (such as Web browsers) and Web servers
communicate via HTTP request and response messages. The
three main HTTP message types are GET, POST, and HEAD
as well as few others like PUT, DELETE, CONNECT, etc.

The GET method is used to retrieve information from the
given server using a given URI. Requests using this method
should only retrieve data and should have no other effect on
the data. GET messages sent to a Web server contain only a
URL. Zero or more optional data parameters may be appended
to the end of the URL. The server processes the optional data
portion of the URL if present and returns the result (a Web
page or element of a Web page) to the browser. The GET
method is the most commonly used. It states that give me this
resource. The part of the URL is also called as Request URL.
The HTTP is to be in uppercase and the next part denotes
the version of HTTP. There is another type HEAD, which is
same as GET but returns only HTTP headers and no document
body.

A POST request is used to send data to the server, for
example, customer information, file upload, etc. using HTML
forms. PUT messages place any optional data parameters in
the body of the request message rather than adding them to
the end of the URL. The Web pages which ask for input from
user uses the POST method. The information filled by the

web user is uploaded in servers entity body. The typical form
submission in POST method. The content type is usually the
application/x-www-form-URL encoded and the content-type
is the length of the URL-encoded form data.

Considering the current proposed implementation approach
for docker monitoring, we are mainly going to use the POST
message type for the communication between the docker
machine and the centralized server. This API call will be
responsible for publishing the current docker machine status
periodically to the centralized server. Whenever events for
posting the docker status is executed, this post call consumes
information such as a name of the container whose status is
requested, the time duration for which the monitoring logs
are required and in return, it will give the response bundle
containing information such as status of the whole system
along with the detailed container information. On execution
of every POST on docker machine, the response of this call
will be processed at the centralized server, which will be made
available to serve the later requests from web user interface
client. All the container information gave as a response by
implemented client is in the form of JSON object.

D. Web Interface For Docker Monitoring

Additionally, we are using the GET call for fetching the
monitoring status from the centralized server and rendering
it on the user interface. So whenever the user logs in and
provides the valid credentials of the server of which he
wants to track the status, the GET call will be executed.
This call will consume the basic information of the docker
system so as to identify it on the centralized system and in
response it will return the detail information populated by a
docker client. This response will be later rendered on the user
interface to represent the information in a proper user readable
format. The provided web interface will allow the user to
view the information of any docker machine connected to
the centralized server. Ultimately this user interface allows the
user to remotely fetch the information of any docker machine
rather than going into the specific network where the docker
actually resides. The monitoring status such as current CPU
usage, memory allocation, etc will be shown to the user in
form of graphs, charts and several user friendly UI widgets.

X. IMPLEMENTATION DETAILS

As shown in architectural diagram, we have used modular
design and development approach for this project. In this
section, we will be discussing every development model in
detail. This section will cover approaches, challenges and
technologies used to develop DocSnap monitoring platform.

A. Monotoring Client

We have developed a monitoring client which is a scheduled
cron job implemented as a python script. This job runs at
every minute and fetches performance metrics such as Disk
Utilization, CPU utilization and memory consume for each
container running on docker instance.

Monitoring client mainly built using three main compo-
nents:

• Google Cadvisor Rest API
• Python Script (Middleware between cadvisor and central

Database.)
• Cron job to run Python Script Periodically.

Fig. 9. Monitoring Client

As mentioned above, we have developed a python script
which makes REST calls to cadvisor API and receives a JSON
response from that. Then this script filters the monitoring
metrics and machine information from the response. Filtering
process involves extraction of relevant metrics such as CPU
and memory metrics. This process involved few challenges as
we have to understand the response data returned by cadvisor.
Following details will explain the challenges and process we
followed:

• CPU Metrics Extraction:
Cadvisor is a Docker container developed by google to
monitor performance of other running containers inside
a single Docker instance. Cadvisor monitors all other
containers continuously in a tight loop and generates
CPU performance statistics at every second per container.
Cadvisor generates and represents CPU utilization by
series of 10-digit integer numbers where every number
represents the CPU consumption time in nanoseconds.
This series typically consist of 60 numbers generated per
second for duration of 1 minute. Our main challenge
was to understand these series of numbers. We figured
out this problem by reading GitHub discussions [12] and
online documents. We figured out that this long integer
is in billionths of core installed on that machine. In
simple words, to get the utilization of all CPU cores,
one must divide the summation of all integers in series
by 1,000,000,000 (1 billion) to get CPU consumption
rate. According to the Cadvisor documentation, this series
consist of derivative of CPU metrics. So, series of CPU
metrics will be rate of change from last metrics to current
metrics. After understanding this, we decided that we will
be storing a mean derivative at every minute. We designed
a custom approach by which we calculate the difference
between maximum and minimum derivative and then

divide this number by number of derivatives in series
which typically consist 60 entries. After calculating mean
derivative, we divide this number by 1,000,000,000 which
give us the utilization of all CPU cores. To calculate CPU
utilization per core, we divide this number by number
of cores installed on that Docker instance. In this way,
we derive and calculate CPU utilization per minute per
container.

• Memory Metrics:
Similar to CPU monitoring, Cadvisor generates memory
utilization statistics at every second. We are calculating
mean for series of memory consumptions happened in
a minute time. Cadvisor API returns series of memory
metrics in terms of bytes that RAM have consumed in last
1 minute. We are converting these bytes into Megabytes
to represent on the front end. Advisor returns all other
statistics such as Disk utilization, network metrics and
some other system performance metrics. But in current
prototype, we are only concentrating on CPU and mem-
ory metrics.
Next important point about monitoring client is the de-
velopment of cron job. We have designed and developed
this monitoring client using Python 2.7 and crontab which
is inbuilt Linux tool to execute periodic jobs. We have
configured this cron job to run at every minute and send
these statistics to our central database server. We have
implemented HTTP post call to send these statistics over
the network to DB server. Here every Docker instance
will push these metrics to central server. This is the reason
our architecture is defined as push based system. Details
of HTTP post call and push based will be discussed in
next point.

B. Web services and Database server

We have developed a client server web application using
three tier architecture which mainly involve three tiers of
design.

• Presentation tier
• Logic tier
• Data tier

Fig. 10. Web Service and Data Center

In this section, we will be discussing logic tier and data tier
in detail.

• Logic Tier
Logic tier sits between presentation and data layer.
This layer mainly composed of all application logic and
processing required for data before sending it to the
front end. We have designed our logic tier using Pylons
web framework. Pylons is an open source software
package developed in Python. Our web application
mainly consists of two endpoints. Both these endpoints
are designed using REST protocol. One endpoint has
been designed for receiving data posted from push based
system. This endpoint extracts the data from HTTP body
and loads that data into JSON format. This JSON data is
separated in various hash maps and stored in temporary
variables. After that it has been stored in database.
Second endpoint is designed to provide metrics for input
Docker instance. This endpoint returns the output in
JSON and returns it to frontend. This endpoint also
returns machine details such as system UUID, number
of cores, total RAM, mac address etc. This endpoint
also returns the container details which include name
and image details.

• Data tier
Data tier mainly designed to store all the data generated
in monitoring system. We have used MongoDB NoSQL
database to store all metrics and machine data. We have
designed collection called as MonitoringStats which
has fields such as containers, machine, machineid etc.
We are using pymongo which is database driver which
communicates with MongoDB from python environment.
MongoDB communicates with external environment over
TCP port. We choose MongoDB over other databases
because MongoDB scales and NoSQL which gives us
the ability to store dynamic data. As we are dealing with
machine metrics and log data, most of the time schema
for that data will be dynamic. Thats why we choose
MongoDB to store data.

C. User Interface

We have designed user interface which provides a single
platform for sysadmins to monitor all Docker instances. This
user interface is nothing but the presentation layer of our
system. User interface mainly displays some key information
of the machine also represents memory and CPU utilization
using graphs.

We have used HTML, JavaScript and CSS frameworks for
development of frontend. We have also used few open source
JavaScript libraries for the implementation of frontend. We
have used bootstrap.js and Highcharts.js to provide crisp User
Interface. We dynamically populate graphs from data returned
by server using Highcarts.js. Detail screenshots and results
will be represented in Results section.

XI. EXPERIMENT SETUP

We have tested this setup on local machine by configuring
local machine as docker instance. We have installed two
containers on this docker instance.

A. Ubuntu Container

This container runs light weight Ubuntu OS. We have
executed following command to create maximum load on
docker instance and generate monitoring stats.

B. Cadvisor Container

This container run cadvisor API service in background. It
generates fair amount of CPU and memory load.

After this setup, we have monitored stats for this local
instance from User Interface we have developed. Detail screen-
shots and explanation is in next section.

XII. ISSUES ENCOUNTERED

A. Choice for Metrics Storage

As we have specified, we have chosen MongoDB as a
primary data storage for storing performance metrics. But
in early stages we opted for Redis which is a inmemory
data storage system. It stores the data in key value pairs and
designed for quick access time. Redis stores all hot data that
is frequent metrics in main memory RAM. But we started
putting storing data in redis, we noticed the spike in CPU and
memory utilization of our backend server. After debugging
the issue with linux commands such as top, free and ps, we
figured out that Redis was causing spike in memory due to
heavy data read and write. So, we decided to scrap the Redis
and used persistent storage as MongoDB.

B. Understanding CPU Metrics

This point is already covered in section X under point A
with title CPU Metrics Extraction.

XIII. RESULT AND ANALYSIS

Above screenshot is taken from the actual project demo,
it’s a main page or the application where user can provide

Fig. 11. DockSnap Main Screen

the IP address of the docker instance as a credential of which
he/she wants to check the current status. On providing valid
ip address, the server returns the complete information along
with monitoring status per of all the docker instances.

Fig. 12. CPU Utilization Metrics Result

Above screenshot represents the current CPU monitoring
status of the selected container. User can view these metrics
by selecting any of the container enlisted on the main screen.
These CPU metrics are generated or fetched for the last 10
mins and shown on a interval of per minute.

Fig. 13. Memory Utilization Result Metrics

Above screenshot represents the current Memory utilization
status of the selected container. User can view these status by
selecting any of the container enlisted on the main screen.
These memory metrics are generated or fetched for the last
10 mins and shown on a interval of per minute.

XIV. TEAM ROLES

Every team member was involved in design and devel-
opment of docker monitoring application. Throughout out
project implementation, sub-tasks were equally divided based
on individual’s expertise. Along with separate tasks, there
were some of the modules on which everyone needed to work
collaboratively. These modules include actions from exploring
docker and its container-based application, understating the
execution and usage of docker commands, complete integra-
tion testing of the application and lastly in the documentation
of the project. Following are the brief details of individual
team-mates contribution in the project:

A. Pratik Bhangale

Responsible for exploring the API provided for docker
monitoring by Cadvisor and implementing the implementing
the essential calls as per requirement. Along with API im-
plementation, Pratik was also responsible for designing and
development of user interface of this monitoring tool.

B. Vishal Rathod

Responsible developing the cron job which will be executed
periodically to push the necessary monitoring status from
every docker machine. These scripts and complete application
are exposed as a single image so that it can be easily
installed on docker machines. Along with this, Vishal was also
responsible for designing and development of the database of
the centralized server.

C. Mayur Pate

Responsible for development of the python application
which integrates the API implementation and the database
connectivity. This application is responsible for updating the
centralized server and handling the error situations. Along with
this, Mayur was also responsible for the integration of pylon
application with the user interface.

XV. FUTURE SCOPE

A. Scaling

Currently this system is storing all monitoring stats in
MongoDB via single application server. This system need to be
tested in production environment to see how it scales. Scaling
will certainly involve issues related with web server, database
server and caching system.

B. Data Storage - Hadoop

We will be dealing with large amount of data generated
from thousands of docker instances. Down the line, we will
need large data storage such as Hadoop to store metrics data.
Some advance frameworks such as Spark, Pig etc will required
for data retrieval.

XVI. CONCLUSION

Docker is the latest hot trend in the technology domain.
All the tech giants are started using docker for building
their systems. Along with such demands, managing docker
system are even more essential. Hence, considering current
technological need, we have proposed an important solution
to monitor the docker current performance using a sim-
ple web based approach. DockSNAP is currently targetting
only those components which requires careful management
operation from system administrators. DockSNAP helps in
reducing manual efforts of accessing every docker machines
via physically logining into every system, it provides a web
based centralized console to access and monitor every docker
machine from single remote system. The biggest advantage
of this remote accessibility allows system administrator to
monitor several thousands of docker systems in a datacenter
from a single computer. These detail monitoring information
provides Containers, CPU, Memory, etc information of the
whole docker system.

REFERENCES

[1] S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and L. Peterson.
Container-based operating system virtualization: A scalable, high- per-
formance alterna- tive to hypervisors. In Proceedings of the 2Nd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2007,
pages 275287, USA, 2007. ACM.

[2] OpenVZ. http://openvz.org/. [Accessed 30 September 2014].
[3] LXC. https://linuxcontainers.org/. [Ac- cessed 30 September 2014].
[4] B. R. Anderson, A. K. Joines, and T. E. Daniels. Xen worlds: Leveraging

virtualization in distance educa- tion. In Proceedings of the 14th Annual
ACM SIGCSE Conference on Innovation and Technology in Computer
Science Education, ITiCSE 09, pages 293297, New York, NY, USA,
2009. ACM.

[5] N. Regola and J.-C. Ducom. Recommendations for vir- tualization
technologies in high performance comput- ing. In 2010 IEEE Second
International Conference on Cloud Computing Technology and Science
(Cloud- Com), pages 409416, Nov. 2010.

[6] What is docker? https://docker.com/whatisdocker/. [Accessed 15
November 2014].

[7] Noyes, Katherine (1 August 2013). "Docker: A &39;Shipping
Container&39; for Linux Code". Linux.com. Retrieved 2013-08-
09.

[8] https://docs.docker.com/engine/understanding-docker/
[9] Docker hub. https://hub.docker.com/. [Accessed 30 September 2014].

[10] Overview of Docker hub - https://docs.docker.com/docker-hub/
[11] https://www.researchgate.net/publication/270906436 Analysis of Docker

Security
[12] Sisdog is open source, system exploration - http://www.sysdig.org/
[13] Docker data centre https://blog.docker.com/2016/02/docker-datacenter-

caas/
[14] http://www.cs.bilkent.edu.tr/ david/cs533/barisuz/webpages/push04.html
[15] https://www.lifewire.com/hypertext-transfer-protocol-817944
[16] HTML - CSS tutorials http://www.w3schools.com/css/
[17] Python tutorials - https://docs.python.org/3/tutorial/

[18] How to write Cron files - https://corenominal.org/2016/05/12/howto-
setup-a-crontab-file/

[19] Java script Tutorials - http://www.w3schools.com/js/
[20] https://docs.docker.com/engine/installation/linux/ubuntulinux/

